Exercise 7

Solve the differential equation or initial-value problem using the method of undetermined coefficients.

$$
y^{\prime \prime}-2 y^{\prime}+5 y=\sin x, \quad y(0)=1, \quad y^{\prime}(0)=1
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}-2 y_{c}^{\prime}+5 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}-2\left(r e^{r x}\right)+5\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-2 r+5=0
$$

Solve for r.

$$
\begin{gathered}
r=\frac{2 \pm \sqrt{4-4(1)(5)}}{2}=\frac{2 \pm \sqrt{-16}}{2}=1 \pm 2 i \\
r=\{1-2 i, 1+2 i\}
\end{gathered}
$$

Two solutions to the ODE are $e^{(1-2 i) x}$ and $e^{(1+2 i) x}$. By the principle of superposition, then,

$$
\begin{aligned}
y_{c}(x) & =C_{1} e^{(1-2 i) x}+C_{2} e^{(1+2 i) x} \\
& =C_{1} e^{x} e^{-2 i x}+C_{2} e^{x} e^{2 i x} \\
& =e^{x}\left(C_{1} e^{-2 i x}+C_{2} e^{2 i x}\right) \\
& =e^{x}\left[C_{1}(\cos 2 x-i \sin 2 x)+C_{2}(\cos 2 x+i \sin 2 x)\right] \\
& =e^{x}\left[\left(C_{1}+C_{2}\right) \cos 2 x+\left(-i C_{1}+i C_{2}\right) \sin 2 x\right] \\
& =e^{x}\left(C_{3} \cos 2 x+C_{4} \sin 2 x\right) .
\end{aligned}
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}-2 y_{p}^{\prime}+5 y_{p}=\sin x \tag{2}
\end{equation*}
$$

Since the inhomogeneous term is a sine function, the particular solution is $y_{p}=A \cos x+B \sin x$.

$$
y_{p}=A \cos x+B \sin x \quad \rightarrow \quad y_{p}^{\prime}=-A \sin x+B \cos x \quad \rightarrow \quad y_{p}^{\prime \prime}=-A \cos x-B \sin x
$$

Substitute these formulas into equation (2).

$$
\begin{gathered}
(-A \cos x-B \sin x)-2(-A \sin x+B \cos x)+5(A \cos x+B \sin x)=\sin x \\
(-A-2 B+5 A) \cos x+(-B+2 A+5 B) \sin x=\sin x
\end{gathered}
$$

Match the coefficients on both sides to get a system of equations for A and B.

$$
\left.\begin{array}{l}
-A-2 B+5 A=0 \\
-B+2 A+5 B=1
\end{array}\right\}
$$

Solving it yields

$$
A=\frac{1}{10} \quad \text { and } \quad B=\frac{1}{5},
$$

which means the particular solution is

$$
y_{p}=\frac{1}{10} \cos x+\frac{1}{5} \sin x .
$$

Therefore, the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =e^{x}\left(C_{3} \cos 2 x+C_{4} \sin 2 x\right)+\frac{1}{10} \cos x+\frac{1}{5} \sin x,
\end{aligned}
$$

where C_{3} and C_{4} are arbitrary constants. Differentiate it with respect to x.

$$
y^{\prime}(x)=e^{x}\left(C_{3} \cos 2 x+C_{4} \sin 2 x\right)+e^{x}\left(-2 C_{3} \sin 2 x+2 C_{4} \cos 2 x\right)-\frac{1}{10} \sin x+\frac{1}{5} \cos x
$$

Apply the boundary conditions to determine C_{3} and C_{4}.

$$
\begin{aligned}
& y(0)=C_{3}+\frac{1}{10}=1 \\
& y^{\prime}(0)=C_{3}+2 C_{4}+\frac{1}{5}=1
\end{aligned}
$$

Solving the system yields $C_{3}=9 / 10$ and $C_{4}=-1 / 20$. Therefore,

$$
y(x)=e^{x}\left(\frac{9}{10} \cos 2 x-\frac{1}{20} \sin 2 x\right)+\frac{1}{10} \cos x+\frac{1}{5} \sin x .
$$

